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1. INTRODUCTION

Composite material offers a great potential and flexibility in structural design because of the anisotropy
of material properties, unique ply-by-ply constructions, and novel fabrication methods. To extract the
maximum performance, structures, in general, are designed with various ply orientations and stacking
sequence from layer to layer within the structures. This flexibility does enhance the structural design;
however, it also increases the degree of difficulty for analysis, particularly by using the finite element
method (FEM). This is especially true for a thick-section composite structure, which may consist of
thousands of anisotropic layers. '

There are two analytical approaches that can be used for analysis of composite structures by FEM,
a layer-by-layer analysis or a property smearing model. The layer-by-layer analysis approach will, in
general, result in a huge finite element model with thousands of elements required to maintain a proper
aspect ratio of elements. Therefore, a tremendous computational effort is required, especially for a
dynamic analysis. For a thick-section large composite structure, the layer-by-layer approach is not

practical.

Another approach is to use the smeared (effective) properties for the elements. Accordingly, each
element consists of several layers and material blocks. The properties of elements are calculated from the
properties of the contained layers based on certain assumptions. The effective properties of the input
model are crucial to the accuracy of FEM analysis. Several models based on either "laminated plate
theory" or "rule of mixture" have been developed to compute the effective properties for use for FEM
analysis. However, these approaches cannot be used to calculate the effective properties accurately for
a very common element with irregular geometry. For example, a taper-shaped element from a filament-
wound cone model is illustrated in Figure 1.

Enie and Rizzo (1970), Pagano (1974), and Christensen and Zywicz (1989) derived the effective
properties from laminated plate theory. Particularly, Pagano’s model is an exact three-dimensional (3-D)
solution calculated from a laminated plate. These models were all developed by assuming a finite
thickness in the transverse direction (2-D geometry). In general, a constant interlaminar shear stress
distribution through the thickness is assumed for these models. Properties calculated from these models
may be suitable for thin-shell structures, but are not proper for a thick structure or a block element since
these models do not correctly account for the properties in the transverse direction, especially for the
transverse shear and shear coupling properties. In addition, the plate theory is limited to a rectangular
geometry and can never be used for an arbitrarily shaped geometry which commonly occurs in FEM
modeling.
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Figure 1. Taper-shaped elements in an FEM cone model.

Models developed by Chou, Carleone, and Hsu (1971) and Sun and Li (1988) assumed a uniform
displacement in the planes parallel to the laminate and a uniform stress in the transverse direction of the
plane. The transverse (interlaminar) shear components are calculated on the basis of volume average. The
in-plane properties resulting from this approach are correct. However, the transverse shear properties are
not accurate enough and, thus, not suitable, for thick-section structures, which generally have large

transverse shear deformations.

One of the common shortcomings of these models is the limitation of geometry. The laminate is
generally restricted to uniform thickness flat plate or thin shell configurations with layers aligned along
element boundaries. Element faces must be rectangular in both the plane of the laminate and the through-
thickness directions. This limitation makes it very difficult to model regions containing ply drop-offs, or
layer terminations, and impose restrictions on the capability to generate finite element meshes for complex
geometries that require changes in mesh density and/or arbitrarily shaped elements that cannot be readily
aligned with the layers of the laminate.

Figure 2 shows a generalized case of an element in a region containing several materials. The

effective properties of the element certainly cannot be calculated correctly with any of the models
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Figure 2. Arbitrarily shaped element with multiple anisotropic layers and materials.

mentioned previously. Commercial packages typically use the volume average approach for computing
effective properties in elements such as this, leading to potential inaccuracies in results, especially for
irregular shaped elements. Accordingly, there is a strong need to develop an accurate property model for
FEM applications.

The objective of this investigation is to develop a model that provides accurate 3-D effective properties
for arbitrarily shaped solid continuum elements containing multiple layers and materials with various
orientations and shapes. The second objective will be to develop a pre-processor incorporating the
effective property model in generating accurate finite element representations of 3-D laminated material
structures for ABAQUS and DYNA3D.

2. MODEL DEVELOPMENT

Consider a portion of a material block contained within some internal region of an element’s volume.
Relative to the global frame with coordinates (xl, x2, x3) illustrated in Figure 3, the generalized elastic
constitutive behavior of each material block is described by the relations

i_ il k
=Gy g,

3
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Figure 3. Coordinates transforms of material blocks and elements.

where t;) is the stress tensor, ef is the strain tensor, and Cijk1 represents the material stiffness tensor

relative to the global frame.

We assume the deformation field within the volume portion contained in the element bounds is
continuous such that it can be approximated as a function of the displacements at the comer points that

bound the volume portion.

We first incorporate the transformation of global coordinates to isoparametric coordinates within the
volume portion
xi=Nex! )

a’

where the Xmi are the global coordinates of the corner points.




The notation used herein follows the standard summation convention for repeated indices. English
indices correspond to the range (1,2,3), referring to the three independent spacial components of a variable
while Greek indices correspond to the (1,2,..I') discrete point values and N“(gl, g2, g3) isoparametric
interpolation functions used for describing the continuous variation of a parameter within a volume. The
interpolation functions, written in terms of the isoparametric coordinates gl of the volume, are expressed

as:

Linear formulation (I'=8):

N1=%(1—g1> (1-g? (1-g3 N5=%<1—g Iy (1-g2) (1+g3)
N2=—;-(1+g1) (1-g2 (1-g3 N6=%(1+g ) (1-g2) (1+g3
N3=%(1+g1) (1+g?) (1-g3) N7=%(1+g h (1+g?) Qg

N4=%(1—g1) (1+g?) (1-g3) N8=%(1—g1> (1+g?) (1+g?
Quadratic formulation (I'=20):

N'=-2a-gh (29 A-g%) @rg'vg?ee?)
NZ=—2(sg ) (18 A-g%) @-glvg?ee?)
NP=-2(sg)) (0g?) (-g%) @-g'-g%eg)
N*=-20-gh) (+g? (-g?) @eg'-gig)
NP=-2(-gh) (-g? (+g?) @eglrg?g)
Nf=-2(+gh) (g% (+g?) -g'e?2)

N7=~%(1+g hy (1+g2) (1+g? 2-gl-g2g?)

NE=—2(gh (s (vg®) @og'-g%-2)




‘ N9=21_(1-g1) a+gh a-gd a-g»  NIB-= 1(1 gl (1+gh A+ (1+g?

N1°=%(1-g2) (1+g? (+gh a-g?) N16=i(1—g2> (1+g?) (1-gh (1+g?)
N“=i(1-g‘) (a+gh (1+g?» a-g?»  NU= 1(1 g% (1+g? -gh a-gd
N12= ‘(1 g% a+g?» a-gh 1-g}  NB- 1(1 g% (1+g?) (1+gh a-g?
N13= 1<1 -gh) (+gh) (1-g? (1+g? N‘9=l(1—g3) (1+g% (1+gh) (1+g?

N‘4=§.<1~g2) (1+g?) (+gh (1+g?)  N2= 1(1 g3 (1+g3) -gh) a+g?d
Displacements within the volume portion are given by
wi=Noy! )

a,

where the U(; represents displacement components of the corner points. The strain-displacement relations

. i j o m : m :
¢ =l o) 1N 19T yi, %7yl 3
2 1ox3 ox'] 2 9gm™| ox} ox !

are thus

The strain energy contributed by the material block is thus expressed as

_1 [ jl] ON® NP ggm ogn ik
coo _Z-Cik“"’[ 27 g7 o oty ¢ N

the integration being performed over the volume portion of the material block (M) contained within the
element. This defines the stiffness of the material block portion as

_ap] =[ ‘jl} N® NP ggm™ gg®
[K’k 0 C’k(“‘)[ dgg™ dg™ oxJ ax‘dv(M)’ ®



so that the strain energy can be written as
_ 1 ub] ik
Em = 3 [Kik o U, Up- 6)

The components of force contributed by the material block at comer point ¢. are obtained from

k

a:U@? ) [Fia]m =[ & }(M) Ys - @

o

Summing over all material blocks that are common to corner point o, results in an expression for the net

external applied force on that point
o af k
D> K3, U5 ®)

Assuming a total of I" comer points contained within the volume of the element, there will be 3 x T
equations of the form (8). Let the first Q of these comer points correspond to the nodes of the element
(Q <T), the next A correspond to corner points lying on the surface of the element at locations other than
the element nodes (0 £ A < (I'-Q2)), and tfle last (I'-Q-A) correspond to points falling within the interior
of the element boundary.

If we represent the material stiffness of the overall element as an equivalent homogeneous anisotropic

material with stiffness tensor Eijl, then the total strain energy for the element is given by

- - ¥ P m n .
E=SCL| [ 5 9 % 4 |ylur, ©
2 aq™ ag™ oxJ ox! v




where v,p=1,...Q and the integration is over the entire volume of the element, \_’; SY represents the element

deformation shape functions; and g™ are the isoparametric coordinates of the transformation
xi=sTx'  sY=5%%q% ¢, (10)

with X,{i corresponding to the global coordinates of the node point y. The force applied to node vy is given

by

Y 98P 9g™ 9q "
aSY dSP dq ' aq dv Upk ’ an
oq™ aq™ oxJ ox! v

Fr- % ¢l f
aul
Y

where v,p=1,...,Q2.

To establish the equivalent material stiffness, we equate the expression for total strain energy in the
element (9) to the sum of the strain energies contributed by the individual material blocks (6), i.e.,

- T 5P ;
C_}lk fas oS aq'f‘ 3q” & luiuk-
aq™ ag" oxJ ax! LI

(12)
T ik B ik o ik
% {[Kik](M) U, U, +2 [Kilp Uy Up + Ky Jan Ug U }
where ¥,p=1,...,Q and B,@=(Q+1),....I. For convenience, we define the following:
Y P m 5. n
AP =[5 5 W7 N (132)
g™ aq™ oxJ ox!
Y
BP = %: [KEJ(M)' (13b)




Using this notation, we can write (12) as
=151 A" - JUE S S S QS < Wik Bo rriq 1k

where y,p=1....,Q and B,0=(Q+1),...,I".

As will be shown, the displacements of comer points B=(Q+1),...,I" can be expressed as functions of

the element node displacements, i.c.,
k _ ky . 1
Ug = Q4 Uy, (15)

where ¥=1...Q and B=(Q+1),...I".

Substitution of (15) into (14) thus results in the expression

a
il i kb 1
claPuluf-sfuiuf+28fqQf 7Up__ BY Qi U/ U, 6

where v,p=1,...,.Q and B,0=(Q+1),...,I".

If we now take the derivative of (16) with respect to the displacement of an arbitrary element node

« in degree-of-freedom m, we obtain 3 x £ equations:
! 1 j
Ch AP U = | B + B2 of + BY o + B QfF, Q% | U, an

where o,p=1.,...,Q and B,0=(Q+1),....I".




Since the Upk are independent of each other, we obtain the relations

=il I
cl A -BF + B Qf + BES i + BEC off Q¥ (1)
where v,p=1,...,Q and B,0=(Q+1),...,.I".
Recalling that from the transformation (10) we have,

ox | - aSY i (19)
aq™ oq™ ,

and using the relations

ox' oq™ _ oS? aquyi=8§
aq™ oxJ g™ ox! !

which are a consequence of the chain rule for partial differentiation, we can multiply expression (13a)

by XYi ka to obtain

T < i T 9SP 9g™ 9q™ ik = o ok
A X,IXk= - JS q. q X, X dv=V6-81, 20)
! PV aqgm 3q™ axJ ox! P !

where \-/ is the total volume of the element, and 8; is the Kronecker delta.

Multiplying expression (18) by Xyr XpS thus results in

Co AP X)X’ =Cf V = [Bi{f +BI Qi + BES Q" + BE® Qp Q;)“kp} X' XS, @D

10




where v,p=1,...,Q and B=(Q+1),...,T’, or, upon dividing by the element volume, we arrive at an expression

for the equivalent element material stiffness tensor; i.e.,

cl- LBl + B o + B o + B QT QI | x) X, @)

<

where y,p=1....,Q and f=(Q+1),...,I".

It remains to develop the coefficients Qé‘ 17 in equation (15), which expresses the displacements of the

comer points (Q+1) through I in terms of the displacements of the element nodes.

For the A comer points lying on the surface of the element, we require that the net force on these
points in any direction tangent to the surface be set to zero, and also that the point remains on the surface
as the element deforms. The transformation relations between global cartesian coordinates (xl, X2, x3) and

isoparametric coordinates (ql, q2, q3) must be developed to incorporate these constraints.

At the location of one of the comer points v ((Q+1) < v < (Q+A)), an arbitrary differential length
vector can be expressed in the global cartesian frame as

ds =dx 1. (23)

1’

where I;, 1,, I; correspond to the units vectors along the global cartesian coordinate directions. From

the transformation (10) we obtain

] i
axi= % 4qk, (24)

so that

L ox! kK3
ds—_Edq I;

aq

(25)

11




We define the basis vectors for the isoparametric coordinates as

. i,

b, = g% i, (26)
to obtain

ds =bdq¥, @7

in the isoparametric system. From this we obtain the second rank metric tensor,

- ox1 oxti 28)
g% 3l

In general, the basis vectors of the isoparametric system are not orthogonal so that the off-diagonal
components of the metric tensor are not zero. The basis vectors are tangent to the isoparametric
coordinate curves at the point v. Since the element surface on which v lies corresponds to a surface where

one of the coordinates, say qk, is a constant, the basis vectors, tangent to the other two coordinate curves
at v, are tangent to the element surface at v, (i.e., (Bm)(k) and (Bn)(k) (m # k and n #k) lie along tangents

to the element surface at v, with the surface corresponding to q¥ = constant in the isoparametric system).

‘From (28) we can develop unit tangent vectors along the surface, given by

(29)

(‘6 )(k) ( (k)

(V)

( (v) ‘/——
where the line under the repeated indices indicates that summation has been suspended.

We can develop the reciprocal base vectors for the isoparametric system from the vector cross

products

12




Bl = _L B, xb, 82=_Lb,xb, °=_L B xb, (30)
g g e
where g = det g,. (31
These relations can be written more compactly as
bk = _Legm (5 )® x 5,)%, (32)

2g

where €™ js the familiar permutation symbol, i.e.,

€™ = 1 if k, m, n is an even permutation of 1, 2, 3;
€™ = _1 if k, m, n is an odd permuatation of 1, 2, 3; and

€™ = 0 if any two indices are the same.

The reciprocal base vector ['6 k]( ) at v is therefore in the direction normal to the element surface
Vv
corresponding to qk = constant, i.e.,

if  the surface corresponds to q1 = constant, [ b 1] ) lies along the normal and [éz](v) and [63] )

are tangents to the surface;

if  the surface corresponds to q2 = constant, [ b 2] o) lies along the normal and [63](v) and [éI](v)

are tangents to the surface; and

if  the surface corresponds to q3 = constant, [B 3](v) lies along the normal and [él](v) and [é2](v)

are tangents to the surface.

13




We now define the contravarient second rank tensor
gt =k -pl. (33)
This now allows us to express the unit normal at the point v as

(6}, = -g—;- 55,: 34)

The definitions (29) and (34) allow us to apply the necessary constraints for the comer points (€2+1)
through (Q+A). The surface comer points must first, however, be categorized according to whether a
point lies along one of the edges of the element, or whether it lies on an element face. Let the points
(Q+1) through (Q+E), 0<E<A, correspond to the surface corner points lying on the edge of the element,
and the points (Q+E+1) through (Q+A) correspond to the remaining comer points that lie on the element

faces.

For surface corner points lying along an element edge assume that the comer point v lies on an
element edge corresponding to the coordinate curve q". From expression (32), the reciprocal base vectors

at point v are defined as

®5y = ek’“"'d: Yy X (B) (3%
v - —Z—ng m/(v) n/(v)*

We require the displacement components at v to be constrained along the direction of bX(k#r) such
that the point remains on the surface qk = constant, corresponding to each of the two element faces that

intersect at the edge. The constraint is thus expressed as

U, i - @M = 8P@h a2 0% U, T - @9 (36)

14




where p=1,...,Q and v=(Q+1),...(Q+E), with (€ k)(v) representing the unit vector along the direction of

(®¥)y) as defined in (34).

. ioad . .
pko 1 gkmn 0% Ox7 g g G7)

or
- i iy
bk L gmg OX O jg (38)
2 ‘/E aq m a n
where we have used the expression for the vector cross product
ii X i] = eijl il' (39)

The displacement constraints at point v lying on an element edge corresponding to the isoparametric
coordinate curve ¢’ can thus be written as
i j i i

ax' ox ul - ax' ox

1 1
(i e w5 07
2/eVg= 1 2gVe= 1

1
$P@q'.9%q% U, (40)

or

axi axJ o1 ax! oxi 1,2 .3 1
e & U, =& ey 8P, q% g% Uy, @

aq™ aq” oq™ aq"

where k # 1, p=1,...,.Q, and v=(Q+1),...,(Q+E), and where it is understood that the expression is to be

evaluated at the point v.

15




The third constraint expression is provided by the requirement for zero force along the coordinate

curve ¢ at v. To impose this condition, we first write (8) using the definition (13b), i.e.,

vV _ vk VOV o Vi K vl k

1

where p=1,...,Q, v, @=(Q+1),...,(Q+E), p=(Q+E+1),...,(Q+A), and {=(Q+A+1),...,I".

From (26), the basis vector tangent to the coordinate curve " is expressed as

. i,
b, = X ;. 43)
aq

The condition for zero force along q* can thus be enforced by forming the vector dot product of
(42) with (43) and setting the result to zero, i.e.,

Fivii : (br)(v) = 0’ (44)
or,
i i i i
ox g yl, ox B ul, ox B-VCU1=— dx B-VPUI, @5)
aq T i ® '——aq T il B ""—aq T il 4 "‘—"aq T il P

r corresponds to coordinate curve q' along the element edge where p=1,....Q2, v,0=(Q+1),...,(Q+E),
p=(Q+E+1),...,(Q+4), and {=(Q+A+1),....T".

For surface corner points lying on an element face, in the case where point v represents a corner point
lying on the element face corresponding to qk = constant, expression (41) provides only one constraint

equation, restricting the displacement components of point v such that it remains on the surface whose

normal is (€ k)(\,),i.e.,




axi oxi 1 i g .

where k corresponds to qk = constant, p=1....,Q2, and v=(Q+E+1),...,(Q+A).

The other two constraint equations are obtained from the requirement for zero force along the

directions tangent to the element face at point v, i.e.,

ve [, & ve  [x KB
Fi Ii ¢ [em]gi) = Og aIld Fi Ii * [en]:t) = 01 (47)

with [ém]g; and [én]:t; defined in (29) and corresponding to unit surface tangent vectors at point v on the

element surface representing qk = constant.

These conditions lead to two equations of the form (45),

i i i i
__a"r By ul+ O By U, + a"r By* U/ = - a"r By® U, 48)
aq aq aq oq

where £k, p=1,...,Q, @=(Q+1),...,(Q+E), v.u=(Q+E+1),...,(Q+4), {=(Q+A+1),...,T’, and where it is again
understood that (46) and (48) are to be evaluated at the point v.

For the remaining comer points ((Q2+A+1) through I') that lie intemally within the element’s
boundaries, we require zero net force in all directions. Expression (42), with the left-hand side set to zero,

provides the constraint equations for these internal points, resulting in

By US + BIUS + BRUS = - BYPUY, 49)

where i=1,2,3, (p=1....,Q), (0=(Q+1),....(Q+E)), (p=(Q+E+1),...,(Q+A)), and (v.£&=(Q+A+1),....I).

17




Expressions (41), (45), (46), (48), and (49) together form a system of 3x(I'-€2) equations in the
3x(I"-€2) unknown displacements for the A surface comer points and the (I'-Q-A) internal comer points.
This system of equations can be solved to obtain the relations (15), expressing the displacement

components of all non-nodel corner points in terms of the displacement components of the elements nodes.

Wedge Prismatic Elements

The constraint equations developed above are suitable for rectangular prismatic elements where the
edges align with the isoparametric coordinate curves. For wedge prismatic elements, an alternate set of

constraint equations must be employed for corner points lying on the element surface.

We shall assume that the isoparametric representation of the wedge prismatic element is such that the
two triangular faces correspond to surfaces of q3 = constant, and that two adjacent four-noded faces of
the element correspond with the surfaces q1 =0 and q2 = 0, in a manner that forms a right-handed frame
of reference. The intersection of the third four-noded face with a surface represented by q3 = constant
results in a curve represented by q2 =1~ ql. A vector lying tangent to this curve at a point v can be

written in terms of the basis vectors as

- - - ox1 o'l
(C)(v) = (b1)(v)‘ - (bz)(v) = Ll - -—% Ii, (50)
aq"  dq° ),

(é)(,) and the basis vector (-133)(\,) thus represent two independent vectors that are tangent to the third

four-noded element face at the point v.

The normal to this element face at point v can be obtained from the cross product

= = - oxi  oxi S ox 2
Nex = @r x Gden = |5 - 9% 1§ x |95 1 i 1)
w = Oy x (b)) i ;
[aq S z]m [aq ’ J(v)
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or

- oxi i oxi| -
N, = € - I. (52)

The constraint equations for wedge prismatic elements can now be developed. As with the rectangular
prismatic elements, we must distinguish between surface comer points that lie on an element edge
(i.e., points (2+1) through (Q+E)), and surface comer points that lie on element faces ((Q2+E+1) through
(Q+A)).

For surface corner points lying along an element edge, the two displacement constraint equations
provided by (41), and the force constraint equation provided by (45) are applicable to those surface comer
points lying on wedge prismatic element edges that are aligned with the ql, q2, and q3 coordinate curves.
The only two element edges for which the constraint equations (41) and (45) do not apply, are the edges
corresponding to q? = 1 — q! on the two triangular faces of the element.

Since the triangular faces correspond to surfaces q3 = constant, the normal to these faces at a point
v is obtained from the reciprocal base vector given by (38), i.c.,

. i oaei) .
By = — Oy [ X g (53)
2/g aq™ 99"y,

The constraint equations for a point v lying on one of the edges corresponding to q2 =1- q1 are thus

obtained as follows along the direction ﬁ(v)., we enforce the displacement constraint

Nw Uy I =N, -8P@l.q% ¢, U, T, (54)
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where p=1,...,.Q and v=(Q+1),...,(Q+E), so that,

i ) i 2 j i i j )
&1 {Bxl } xz] { xsl Uy = & [axl - sz] [a"3] 5P@’q% a9y Ups (55)
aq aq v) daq v) oq aq V) oq )

where p=1,...,Q and v=(Q+1),...,(Q+E).

<

Along the direction (63)(\»)’ the required displacement constraint is
- 1a - 12
®*)y * Uy I = @), - SP@'a%ad)y, U, 1, (56)

where p=1,...,.Q and v=(Q+1),...,(Q+E); or,

i j i j
g3mn i) aXm N axn le = g3mn i1 axm _ _9_’_(_; SP@q l,qz,q3)(v) Upl, 61))
oq aq v aq aq ) -

where p=1,...,.Q, and v=(Q+1),...,(Q+E), and along the direction (é)(v), which is tangent to the edge at

v, we require the force to be zero, i.e.,

©) Fili =0, (58)

resulting in

i i i i
L B3 vl + BY Ul + B 1)) - - LI TR AT G
' g%}y, 9q° 99 ky)

where p=1....,Q, v,0=(Q+1),...,(Q+E), p=(Q+E+1),...,(Q+A), and {=(Q+A+1),....,T".
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For surface comer points lying on an element face, only those corner points lying on the element face

whose normal is given by (52) require constraint equations that are different from (46) and (48).

Expressions (55) and (59) provide two of the constraint equations, except with v corresponding to
points (Q+E+1) through (Q+A). The third constraint equation corresponds to the requirement for zero

force along the direction of the basis vector (-63)@) that can be obtained from (48) by setting r = 3, i.e.,

vi .. 1 oxi _wp .1
By U = - Z_BP U

ax' ove 1 ox! w1 oxl
aq P

+ — B; U, +

(60)
aq> dq° SFYE

where p=1,...,Q, @=(Q+1),...,(Q+E), v,u=(Q+E+1),...,(Q+4), and {=(Q+A+1),...,T.

Expressions (55), (57), and (59) for surface comer points lying on the edges corresponding to
q2=l - ql, and (55), (59), and (60) for surface corner points lying on the element face that is not aligned
with the isoparametric coordinate surfaces, can be used with wedge prismatic elements to obtain three
equations for the unknown displacement components of the surface corner points. These relations,
together with the equations provided in (41), (45), (46), (48), and (49) for the other non-nodal comer
points, can be grouped to form the 3x(I'-2) equations required for obtaining the relations (15), when

wedge prismatic elements are incorporated.
3. RESULTS

In this section, the effective stiffness constants, C fllc of a four-layered cubic element with rectangular

faces are calculated to demonstrate the capability of this newly developed formulation. Results are
compared to those calculated by Chou’s model showing a significant difference in transverse shear
properties. The effects of stacking sequence of layer construction on the effective properties of the
element will also be illustrated and discussed in detail.

Figure 4 illustrates the coordinate system and constitutive relation in a four-layer laminated block
(0.2 x 0.2 x 0.2 in). Coordinates 1 and 2 are on the plane of laminate plane. The ply orientation is
defined as the angle between fiber direction and coordinate 1. A 0° ply has fibers oriented along
coordinate 1. The effective stiffness components are illustrated in a contracted notation (C;;, i and
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Figure 4. Constitutive relation for an anisotropic four-layered element.

j =1 - 6) for convenience. Two layup constructions, a cross-ply [0/0/90/90] and an angle-ply [0/0/45/45],
Qem investigated. Each ply has an equal thickness of 0.05 in. In fact, each ply is composed of 10 unit
directional fiber layers with thickness of 0.005 in. The effective properties were calculated based on
IM7 graphite/8551 epoxy material whose properties are shown in Table 1. An 8-node element which
utilizes linear transform functions in Equation 4 for analysis was used to calculate effective properties of

the material block.
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Table 1. Material Properties of IM7/8551

El1l = 22.50E6 PSI
E22 = 1.20E6 PSI
E33 = 1.20E6 PSI
vi2 = 033
vi3 = 033
v23 = 031
G12 = 0.70E6 PSI
G13 = 0.70E6 PSI
G23 = 0.53E6 PSI

3.1 Transverse Shear Propertiecs. Tables 2 and 3 show the comparison of effective stiffness for both

layup constructions [0/0/90/90] and 0/0/45/45], respectively. Significant differences on transverse shear
properties and shear coupling terms were found for both cases. The transverse shear properties (C44 and
Css) for a layup construction of [0/0/90/90] are 36% lower than calculated by the new model. The
transverse shear properties from Chou’s model are basically calculated from a volume average. His model
does not account for either continuity or compatibility of the materials through the thickness. A linear
deformation was also made by Chou’s model. Therefore, the in-plane properties (C 11]] ,=1,2, and 6) and

transverse normal (C;3) were found to be identical. These properties are considered to be exact under the

assumption.

For an angle-ply layup construction [0/0/45/45], transverse shear properties, C44 and Css, are different
by 35% and 40%, respectively. The transverse shear coupling terms (C,5 = Cs,) are 85% of difference.
These results further illustrate the importance of the current model. In fact, larger errors may be obtained
for an element with more complex ply orientations, stacking sequence, or various ply thicknesses by using

the "volume average” approach.

As discussed previously, both "volume average" and "plate theory” approaches cannot accurately
calculate effective properties in the transverse direction. For a thick-section structure, the transverse shear
properties are even more important since these structures generally carry more shear loads than thin-shelled
structures. For finite element applications, accurate transverse shear properties are especially important

since the elements are 3-D blocks with arbitrary shapes.
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Table 2. Comparison of the Effective Properties of Cross-Ply Laminates

Chou’s Model
0.1211E+08 0.5883E+06 0.5051E+06 0 0 0
0.5883E+06 0.1211E+08 0.5051E+06 0 0 0
0.5051E+06 0.5051E+06 0.1342E+07 0 0 0
0 0 0 0.6033E+06 0 0
0 0 0 0 0.6033E+06 0
0 0 0 0 0 0.7000E+06
3-D Solid Element Model
0.1211E+08 0.5883E+06 0.5051E+06 0 0 0
0.5883E+06 0.1211E+08 0.5051E+06 0 0 0
0.5051E+06 0.5051E+06 0.1342E+07 0 0 0
0 0 0 0.4413E+06 0 0
0 0 0 0 0.4413E+06 0
0 0 0 0 0 0.7000E+06
Table 3. Comparison of the Effective Properties of Angle-Ply Laminates
Chou’s Model
0.1497E+08 0.3117E+07 0.5444E+06 0 0 0.2694E+07
0.3117E+07 0.4194E+07 0.4658E+06 0 0 0.2692E+07
0.5444E+06 0.4658E+06 0.1342E+07 0 0 0.3933E+05
0 0 0 0.5670E+06 0.4209E+05 0
0 0 0 0.4209E+05 0.6512E+06 0
0.2694E+07 0.2692E+07 0.3933E+05 0 0 0.3231E+07
3-D Solid Element Model
0.1497E+08  0.3117E+07 0.5444E+06 0 0 0.2694E+07
0.3117E+07 0.4194E+07 0.4658E+06 0 0 0.2692E+07
0.5444E+06 0.4658E+06 0.1342E+07 0 0 0.3933E+05
0 0 0 0.4182E+06 0.2271E+05 0
0 0 0 0.2271E+05 0.4637E+06 0
0.2694E+07 0.2692E+07 0.3933E+05 0 0 0.3231E+07

24




3.2 Effects of Stacking Sequence. In general, the plate theory assumes constant transverse shear
stress distribution through the thickness. Accordingly, the effective transverse shear constants of a
laminate calculated from the plate theory approach are independent of the stacking sequence. Recently,
Roy and Kim (1989) showed the effects of stacking sequence on transverse shear properties
experimentally. Models based on the deformations of a beam and a ring subjected to specific loading
conditions were proposed by Roy and Tsai (1992). Their model reported the dependence of transverse

shear properties on stacking sequence. However, only two specific geometries (beam and ring) and

loading conditions were considered, and cannot be applied to a generalized case.

Tables 4 and 5 illustrate the variations of electric constants in cross-ply [0/90] and angle-ply [0/45]
laminates as functions of stacking sequence, respectively. In the cross-ply laminate case, the shear elastic
constant, C,,, which corresponds to shear stress and strain in the 2-3 direction (i.e., 723 and ¥23) increases
as the 90° plies are located away from the laminate’s midplane. The 90° plies have fibers oriented along
-coordinate 2 and provide more shear stiffness in the 2-3 direction. Thus, the maximum shear stiffness,
Cyy4. occurs for the stacking sequence of [90/0/0/90]. On the contrary, the shear elastic constant, Css,
which corresponding to shear stress and strain in the 1-3 direction (t13 and y13) decreases as the 90° plies
are moved away from laminate’s midplane. Since the 0° layers give a higher shear stiffness in this
particular direction, the laminate with layup construction of [90/0/0/90] has the smallest shear constant,
Css.

Similar effects of stacking sequence on transverse shear constants, C,, and Css, and shear couplings,
C,5 and Cs,, were observed for laminates with angle-ply [0/45] construction shown in Table 5. The same
conclusions can be drawn as those discussed in the previous section for the cross-ply laminates. The shear
elastic constant, C,,, which corresponds to shear stress and strain in the 2-3 direction (i.e., T23 and Y13),
decreases as the 45° plies are moved away from the laminate’s midplane. In general, the effects of
stacking sequence are more significant for an element with irregular cross sections, complex layup

constructions, and nonsymmetric stacking sequence.
4. FINITE ELEMENT APPLICATIONS

A finite element preprocessor was developed to generate finite element meshes with specific
geometries. The effective properties of each element are calculated individually based on the model.

Figure 5 shows the finite element model of a composite rocket motor case generated by the preprocessor.
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Table 4. Effects of Stacking Sequence on Transverse Shear Properties of Cross-Ply Laminates

[0/90/90/0]
0.1211E+08  0.5883E+06  0.5051E+06 0 0 0
0.5883E+06  0.1211E+08  0.5051E+06 0 0 0
0.5051E+06  0.5051E+06  0.1342E+07 0 0 0
0 0 0 0.4278E+06 0 0
0 0 0 0 0.4556E+06 0
0 0 0 0 0 0.7000E+06
[0/0/90/90]
0.1211E+08  0.5883E+06  0.5051E+06 0 0
0.5883E+06 0.1211E+08  0.5051E+06 0 0
0.5051E+06 0.5051E+06  0.1342E+07 0 0 0
0 0 0 0.4413E+06 0 0
0 0 0 0 0.4413E+06 0
0 0 0 0 0 0.7000E+06
[90/0/0/90]
0.1211E+08  0.5883E+06  0.5051E+06 0 0 0
0.5883E+06 0.1211E+08  0.5051E+06 0 0 0
0.5051E+06  0.5051E+07  0.1342E+07 0 0 0
0 0 0 0.4556E+06 0 0
0 0 0 0 0.4278E+06 0
0 0 0 0 0 0.7000E+06
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Table 5. Effects of Stacking Sequence on Transverse Shear Properties of Angle-Ply Laminates

[0/45/45/0]
0.1497E+08  0.3117E+07  0.5444E+06 0 0 0.2694E+07
0.3117E+07  0.4194E+07  0.4658E+06 0 0 0.2692E+07
0.5444E+06  0.4658E+06  0.1342E+07 0 0 0.3933E+05
0 0 - 0 04114E+06 0.1576E+05 0
0 0 0 03138E+05  0.5925E+06 0
0.2694E+07  0.2692E+07  0.3993E+05 0 0 0.3231E+07
[0/0/45/45]
0.1497E+08  0.3117E+07  0.5444E+06 0 0 0.2694E+07
0.3117E+07 0.4194E+07  0.4658E+06 0 0 0.2692E+07
0.5444E+06  0.4658E+06  0.1342E+07 0 0 0.3933E+05
0 0 0 05167E+06  0.3441E+05 0
0 0 0 03441E+05 0.5881E+06 0
0.2694E+07  0.2692E+07  0.3933E+05 0 0 0.3231E+07
[45/0/0/45)
0.1497E+08  0.3117E+07  0.5444E+06 0 0 0.2694E+07
0.3117E+07  0.4194E+07  0.4658E+06 0 0 0.2692E+07
0.5444E+06  0.4658E+06  0.1342E+07 0 0 0.3933E+05
0 0 0 0.5204E+06  0.3746E+05 0
0 0 0 0.3746E+05  0.5835E+06 0
0.2694E+07  0.2692E+07  0.3933E+05 0 0 0.3231E+07
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L

Figure 5. Finite element model for a composite rocket motor case.

The motor case consists of two filament-wound composite components. The case’s inner region is a
helically wound bottle with a geodesic winding pattern. The outer region of the motor case is a cylinder

with a cross-ply layup construction. In addition, both the inner and outer cases were constructed with

graphite and glass composites.

The thickness of the composite varies along the axial direction in both the inner and outer cases, as
shown in Figure 6. Due to the complexity of case geometry, the general elements are not rectangular and
vary along the arc length. The elements are arbitrarily shaped and contain several plies with various fiber
orientations and materials through the thickness in some areas. In fact, it is typically a finite element
model used in a real-world application; the capability to determine the effective properties in the proposed

model is indeed needed.
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Figure 6. Laminate construction of the composite case.

For a geodesic winding, the fibers are placed along the shortest path on the case surface and the
winding angle (i.e., fiber orientation) varies along the path upon the geometry. The winding angles of the
innermost layer are illustrated and plotted along the arc length in Figure 7. The winding angles vary
dramatically in the dome and nozzle areas. The developed preprocessor calculates the winding angle at
each element according to the geodesic path and case geometry. The stiffness components (C li(jl,) of the
innermost elements along the arc length are illustrated in Figure 8. For the most part, effective properties
vary significantly in most materials. The variation is due to the combined effect of various winding angles

and layup constructions.

Clearly, the effective properties are essential to achieving an accurate finite element analysis.
Currently, all the commercial packages were developed using either "volume average" or "laminated plate
theory" to determine the effective properties. In general, the results are poor for structural analyses with
complex geometries and layup constructions. In fact, ABAQUS suggests that no skewed elements be used
in the finite element model to improve the accuracy of analyses.
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5. CONCLUSIONS

Based on strain energy approaches and finite element techniques, an effective property model was
developed to determine the properties of an arbitrarily shaped element with multi-material regions. The
model is especially suitable for 3-D finite element application due to the accurate transverse shear
properties. The effective material stiffness calculated by the model was compared to these by Chou’s
model. Significant differences in transverse shear properties were found for a four-ply cubic element.
The comparison illustrated the lack of accuracy of currently available models. Effects of stacking

sequence on transverse properties were identified and discussed in detail.

Having accurate transverse shear properties and the capability to model arbitrarily shaped elements
are particularly important for finite element applications, especially for thick-section composites with near-
net shape geometries subjected to complex loadings. A preprocessor was developed using the effective
property model to generate properties for the finite element model. The preprocessor currently has
capabilities to generate material properties for a finite element model for an axisymmetric filament-wound
case and several other geometries of interest. The preprocessor is developed to be used with DYNA3D
and ABAQUS finite element codes to perform dynamic analysis of composite structures with complex

thick-section geometry.
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